Groups whose Fourier algebra and Rajchman algebra coincide

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPECTRUM OF THE FOURIER-STIELTJES ALGEBRA OF A SEMIGROUP

For a unital foundation topological *-semigroup S whose representations separate points of S, we show that the spectrum of the Fourier-Stieltjes algebra B(S) is a compact semitopological semigroup. We also calculate B(S) for several examples of S.

متن کامل

Query Evaluation in CROQUE - Calculus and Algebra Coincide

With the substantial change of declarative query languages from plain SQL to the so called object SQLs in particular OQL there has surprisingly been not much change in the way problems of query re presentation and optimization for such languages are tackled We identify some of the di culties pure algebraic approaches experience when fac ing object models and the operations de ned for them Calcu...

متن کامل

Biflatness and biprojectivity of the Fourier algebra

We show that the biflatness—in the sense of A. Ya. Helemskĭı—of the Fourier algebra A(G) of a locally compact groupG forcesG to either have an abelian subgroup of finite index or to be non-amenable without containing F2 as a closed subgroup. An analogous dichotomy is obtained for biprojectivity.

متن کامل

A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

متن کامل

Lie triple derivation algebra of Virasoro-like algebra

Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2017

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2017.06.042